Difference between revisions of "Closure of unit fractions"
From timescalewiki
(Created page with "The set $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}=\left\{ 0,1,\dfrac{1}{2},\dfrac{1}{3},\ldots \right\}$, where the $\overline{\mathrm{overline}}$ deno...") |
|||
Line 2: | Line 2: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+$\mathbb{T}= | + | |+$\mathbb{T}= \overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}} $ |
|- | |- | ||
|Generic element $t\in \mathbb{T}$: | |Generic element $t\in \mathbb{T}$: | ||
− | | Either $t=0$ or for some $n \in \mathbb{Z}, t = \dfrac{1}{n}$ | + | | Either $t=0$ or for some $n \in \mathbb{Z}^+, t = \dfrac{1}{n}$ |
|- | |- | ||
|Jump operator: | |Jump operator: |
Revision as of 17:53, 20 May 2014
The set $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}=\left\{ 0,1,\dfrac{1}{2},\dfrac{1}{3},\ldots \right\}$, where the $\overline{\mathrm{overline}}$ denotes topological closure of this set in the usual topology on $\mathbb{R}$ is a time scale.
Generic element $t\in \mathbb{T}$: | Either $t=0$ or for some $n \in \mathbb{Z}^+, t = \dfrac{1}{n}$ |
Jump operator: | $\sigma(t) = \left\{ \begin{array}{ll} \dfrac{1-t}{t} &; t>1 \\ 0 &; t=0 \end{array} \right.$ |
Graininess operator: | $\mu(t) = \left\{ \begin{array}{ll} \dfrac{1-t-t^2}{t} &; t>0 \\ 0 &; t=0 \end{array} \right.$ |
$\Delta$-derivative: | $f^{\Delta}(t) = \left\{ \begin{array}{ll} \dfrac{t}{1-t} \left[ f \left(\dfrac{1-t}{t} \right)-f(t) \right] &; t>0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$ |
$\Delta$-integral: | |
Exponential function: |