Difference between revisions of "Riccati equation"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]]. The Riccati equation is the nonlinear [[dynamic equation]] defined by
+
Let $\mathbb{T}$ be a [[time scale]]. The [[self-adjoint]] equation is $(py^{\Delta})^{\Delta}+qy^{\sigma}=0$. The Riccati equation is the nonlinear [[dynamic equation]] defined by
 
$$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$
 
$$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$
 
where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.
 
where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> STATEMENT OF THEOREM
+
<strong>Theorem:</strong> There exists a solution $y$ of the self-adjoint equation with $y(t) \neq 0$ for all $t \in \mathbb{T}$ if and only if the Riccati equation has a solution $z$ related by $z=\dfrac{py^{\Delta}}{y}$.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> proof goes here █  
+
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 22:45, 27 June 2015

Let $\mathbb{T}$ be a time scale. The self-adjoint equation is $(py^{\Delta})^{\Delta}+qy^{\sigma}=0$. The Riccati equation is the nonlinear dynamic equation defined by $$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$ where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.

Properties

Theorem: There exists a solution $y$ of the self-adjoint equation with $y(t) \neq 0$ for all $t \in \mathbb{T}$ if and only if the Riccati equation has a solution $z$ related by $z=\dfrac{py^{\Delta}}{y}$.

Proof:

References

[1]