Difference between revisions of "Jackson logarithm"
From timescalewiki
(Created page with "This definition attempts to define the logarithm as the inverse of an exponential function. Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R...") |
|||
Line 1: | Line 1: | ||
This definition attempts to define the logarithm as the inverse of an [[exponential_functions | exponential function]]. Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be [[regressive_function | regressive]]. Define $F \colon \mathcal{R}(\mathbb{T},\mathbb{R}) \rightarrow C_n^1(\mathbb{T},\mathbb{R})$ by $F(p)=e_p(t,s)$, where $C_n^1$ denotes nonvanishing continuously $\Delta$-differentible functions. Let $g \in C_n^1(\mathbb{T},\mathbb{R})$. Define | This definition attempts to define the logarithm as the inverse of an [[exponential_functions | exponential function]]. Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be [[regressive_function | regressive]]. Define $F \colon \mathcal{R}(\mathbb{T},\mathbb{R}) \rightarrow C_n^1(\mathbb{T},\mathbb{R})$ by $F(p)=e_p(t,s)$, where $C_n^1$ denotes nonvanishing continuously $\Delta$-differentible functions. Let $g \in C_n^1(\mathbb{T},\mathbb{R})$. Define | ||
$$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$ | $$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$ | ||
+ | |||
+ | =Properties= | ||
+ | *$\log_{\mathbb{T}} e_p(t,s) = \dfrac{(e_p(t,s))^{\Delta}}{e_p(t,s)} = p(t)$ | ||
+ | *If $f$ $\Delta$-differentiable nonvanishing function then $e_{\log_{\mathbb{T}}f}(t,s)=\dfrac{f(t)}{f(s)}.$ | ||
+ | *For nonvanishing $\Delta$-differentiable functions $f,g$, | ||
+ | $\log_{\mathbb{T}} f(t)g(t) = \log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t).$ | ||
+ | *For nonvanishing $\Delta$-differentiable functions $f,g$, | ||
+ | $\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$ |
Revision as of 00:20, 22 May 2015
This definition attempts to define the logarithm as the inverse of an exponential function. Let $\mathbb{T}$ be a time scale. Let $p \in \mathcal{R}(\mathbb{T},\mathbb{R})$ be regressive. Define $F \colon \mathcal{R}(\mathbb{T},\mathbb{R}) \rightarrow C_n^1(\mathbb{T},\mathbb{R})$ by $F(p)=e_p(t,s)$, where $C_n^1$ denotes nonvanishing continuously $\Delta$-differentible functions. Let $g \in C_n^1(\mathbb{T},\mathbb{R})$. Define $$\log_{\mathbb{T}}g(t)=\dfrac{g^{\Delta}(t)}{g(t)}.$$
Properties
- $\log_{\mathbb{T}} e_p(t,s) = \dfrac{(e_p(t,s))^{\Delta}}{e_p(t,s)} = p(t)$
- If $f$ $\Delta$-differentiable nonvanishing function then $e_{\log_{\mathbb{T}}f}(t,s)=\dfrac{f(t)}{f(s)}.$
- For nonvanishing $\Delta$-differentiable functions $f,g$,
$\log_{\mathbb{T}} f(t)g(t) = \log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t).$
- For nonvanishing $\Delta$-differentiable functions $f,g$,
$\log_{\mathbb{T}} \dfrac{f(t)}{g(t)} = \log_{\mathbb{T}} f(t) \ominus \log_{\mathbb{T}} g(t).$