Difference between revisions of "Derivation of delta sin sub p for T=Z"

From timescalewiki
Jump to: navigation, search
(Created page with "$$\begin{array}{ll} \sin_p(t,s) &= \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i} \en...")
 
Line 1: Line 1:
 
$$\begin{array}{ll}
 
$$\begin{array}{ll}
 
\sin_p(t,s) &= \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} \\
 
\sin_p(t,s) &= \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} \\
&= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i}
+
&= \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i}
 
\end{array}$$
 
\end{array}$$

Revision as of 20:37, 29 April 2015

$$\begin{array}{ll} \sin_p(t,s) &= \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} \\ &= \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i} \end{array}$$