Difference between revisions of "Relationship between delta exponential and nabla exponential"
From timescalewiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>[[Relationship between delta exponential and nabla exponential|Theorem]]:</strong> If $ | + | <strong>[[Relationship between delta exponential and nabla exponential|Theorem]]:</strong> If $q$ is [[continuous]] and [[mu regressive | $\mu$-regressive]] then |
− | $$ | + | $$e_q(t,s)=\hat{e}_{\frac{q^{\rho}}{1+q^{\rho}\nu}}(t,s)=\hat{e}_{\ominus_{\nu}(-q^{\rho})}(t,s),$$ |
− | where $ | + | where $e_q$ denotes the [[Delta exponential|$\Delta$-exponential]] and $\hat{e}_q$ denotes the [[nabla exponential|$\nabla$-exponential]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 09:29, 12 April 2015
Theorem: If $q$ is continuous and $\mu$-regressive then $$e_q(t,s)=\hat{e}_{\frac{q^{\rho}}{1+q^{\rho}\nu}}(t,s)=\hat{e}_{\ominus_{\nu}(-q^{\rho})}(t,s),$$ where $e_q$ denotes the $\Delta$-exponential and $\hat{e}_q$ denotes the $\nabla$-exponential.
Proof: █