Difference between revisions of "Relationship between nabla derivative and delta derivative"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarro...") |
(No difference)
|
Revision as of 09:05, 12 April 2015
Theorem: Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. If $f$ is $\Delta$-differentiable and $f^{\Delta}$ is rd continous on $\mathbb{T}^{\kappa}$, then $f$ is $\nabla$-differentiable on $\mathbb{T}_{\kappa}$ and $$f^{\nabla}(t) = f^{\Delta}(\rho(t)).$$
Proof: █