Difference between revisions of "Chain rule"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Assume that $g \colon \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $g \...")
 
(No difference)

Latest revision as of 18:37, 6 April 2015

Theorem: Assume that $g \colon \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $g \colon \mathbb{T} \rightarrow \mathbb{R}$ is $\Delta$-differentiable and $f \colon \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable. Then there exists $c$ in the interval $[t,\sigma(t)]$ with $$(f \circ g)^{\Delta}(t) = f'(g(c))g^{\Delta}(t).$$

Proof:

Theorem: Let $f \colon \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and suppose $g \colon \mathbb{T} \rightarrow \mathbb{R}$ is $\Delta$-differentiable. Then $f \circ g \colon \mathbb{T} \rightarrow \mathbb{R}$ is $\Delta$-differentiable and the formula $$(f \circ g)^{\Delta}(t) = \left\{ \displaystyle\int_0^1 f'(g(t)+h\mu(t)g^{\Delta}(t)) dh \right\} g^{\Delta}(t)$$ holds.

Proof: