Difference between revisions of "Delta Hölder inequality"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,...") |
m (Tom moved page Hölder inequality to Delta Hölder inequality) |
(No difference)
|
Revision as of 23:26, 28 March 2015
Theorem: Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap\mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$ where $p>1$ and $q = \dfrac{p}{p-1}$.
Proof: █
References
R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey