Difference between revisions of "Delta hk"

From timescalewiki
Jump to: navigation, search
(Created page with "Define $h_n \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by the scheme: $$\left\{ \begin{array}{ll} h_0(t,s)=1 \\ h_n(t,s)= \displaystyle\int_s^t h_{n-1}(\tau,s...")
(No difference)

Revision as of 18:31, 21 March 2015

Define $h_n \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by the scheme: $$\left\{ \begin{array}{ll} h_0(t,s)=1 \\ h_n(t,s)= \displaystyle\int_s^t h_{n-1}(\tau,s) \Delta \tau. \end{array} \right.$$

Time Scale $h_k$ Monomials
$\mathbb{T}=$ $h_k(t,t_0)=$
$\mathbb{R}$ $\dfrac{(t-t_0)^k}{k!}$
$\mathbb{Z}$ $\displaystyle{t-t_0 \choose k} = \dfrac{(t-t_0)!}{k! (t-t_0-k)!}$
$h\mathbb{Z}$ $\dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-t_0)$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$ $\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^nt_0}{\sum_{i=0}^n q^i}$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$