Difference between revisions of "Delta cosh"

From timescalewiki
Jump to: navigation, search
Line 3: Line 3:
 
=Properties=
 
=Properties=
 
{{:Derivative of delta cosh}}
 
{{:Derivative of delta cosh}}
 +
{{:Delta cosh minus delta sinh}}
  
 
=Relation to other functions=
 
=Relation to other functions=
{{:Delta cosh minus delta sinh}}
+
{{:Delta hyperbolic trigonometric second order dynamic equation}}
 
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order dynamic equation is
 
$$y^{\Delta \Delta}-\gamma^2 y= 0$$
 
is given by
 
$$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=Examples=
 
=Examples=

Revision as of 18:11, 21 March 2015

Let $p \in C_{rd}$ and $-\mu p^2$ be a regressive function. Then the $\Delta$-hyperbolic cosine function is defined by $$\cosh_p(t,s) = \dfrac{e_p(t,s)+e_{-p}(t,s)}{2}.$$

Properties

Theorem

Let $p\in C_{rd}$. If $-\mu p^2 \in \mathcal{R}$, then $$\cosh^{\Delta}_p = p\sinh_p,$$ where $\cosh_p$ denotes the $\Delta$-$\cosh_p$ function and $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function.

Proof

References

Theorem

The following formula holds: $$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$ where $\cosh_p$ denotes the $\Delta$-$\cosh_p$ function, $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function, and $e_p$ denotes the $\Delta$-$e_p$ function.

Proof

References

Relation to other functions

Theorem

Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order dynamic equation is $$y^{\Delta \Delta}-\gamma^2 y= 0$$ is given by $$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$

Proof

References

Examples

Time Scale $\Delta$-$\cosh_1$ Functions
$\mathbb{T}=$ $\cosh_1(t,0)=$
$\mathbb{R}$ $\cosh_1(t,0)=\cosh(t)$
$\mathbb{Z}$
$h\mathbb{Z}$ $\cosh_1(t,0)=\dfrac{1}{2}\left( (1-h)^{\frac{t}{h}} + (1+h)^{\frac{t}{h}}\right) = \displaystyle\sum_{k=0}^{\infty} h_{2k}(t,0) $
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$