Difference between revisions of "Delta cosh minus delta sinh"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$\cosh^2_p - \...")
 
Line 2: Line 2:
 
<strong>[[Delta cosh minus delta sinh|Theorem]]:</strong> The following formula holds:
 
<strong>[[Delta cosh minus delta sinh|Theorem]]:</strong> The following formula holds:
 
$$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$
 
$$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$
where $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]] function, $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function, and $e_p$ denotes the [[Delta exponential|$\Delta$-$\e_p$]] function.
+
where $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]] function, $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function, and $e_p$ denotes the [[Delta exponential|$\Delta$-$e_p$]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 18:09, 21 March 2015

Theorem: The following formula holds: $$\cosh^2_p - \sinh^2_p = e_{-\mu p^2},$$ where $\cosh_p$ denotes the $\Delta$-$\cosh_p$ function, $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function, and $e_p$ denotes the $\Delta$-$e_p$ function.

Proof: