Difference between revisions of "Joint time scales probability density function"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale. Let $X$ and $Y$ be random variables. We say that $f_{X,Y}(x,y)$ is a joint time scales probability density function if # $f_{X,Y}(x,y) \g...") |
(No difference)
|
Revision as of 04:35, 6 March 2015
Let $\mathbb{T}$ be a time scale. Let $X$ and $Y$ be random variables. We say that $f_{X,Y}(x,y)$ is a joint time scales probability density function if
- $f_{X,Y}(x,y) \geq 0$ for all $x,y \in \mathbb{T}$
- $\displaystyle\int_0^{\infty} \int_0^{\infty} f_{X,Y}(x,y) \Delta y \Delta x=1$.