Difference between revisions of "Delta cosh"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 +
Let $p$ and $-\mu p^2$ be [[regressive function|regressive functions]]. Then the $\Delta$ hyperbolic cosine function is defined by
 +
$$\cosh_p(t,s) = \dfrac{e_p(t,s)+e_{-p}(t,s)}{2}.$$
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> Let $p\in C_{rd}$. If $-\mu p^2 \in \mathcal{R}$, then
 +
$$\cosh^{\Delta}_p = p\sinh_p,$$
 +
where $\sinh_p$ is the [[Delta cosh | $\sin_p$]] function.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
=Relation to other functions=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> $\cosh^2_p - \sinh^2_p = e_{-\mu p^2}$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order dynamic equation is
 +
$$y^{\Delta \Delta}-\gamma^2 y= 0$$
 +
is given by
 +
$$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
=Examples=
 
{| class="wikitable"
 
{| class="wikitable"
 
|+Time Scale $\Delta$-$\cosh_1$ Functions
 
|+Time Scale $\Delta$-$\cosh_1$ Functions

Revision as of 06:27, 1 March 2015

Let $p$ and $-\mu p^2$ be regressive functions. Then the $\Delta$ hyperbolic cosine function is defined by $$\cosh_p(t,s) = \dfrac{e_p(t,s)+e_{-p}(t,s)}{2}.$$

Properties

Theorem: Let $p\in C_{rd}$. If $-\mu p^2 \in \mathcal{R}$, then $$\cosh^{\Delta}_p = p\sinh_p,$$ where $\sinh_p$ is the $\sin_p$ function.

Proof:

Relation to other functions

Theorem: $\cosh^2_p - \sinh^2_p = e_{-\mu p^2}$

Proof:

Theorem: Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order dynamic equation is $$y^{\Delta \Delta}-\gamma^2 y= 0$$ is given by $$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$

Proof:

Examples

Time Scale $\Delta$-$\cosh_1$ Functions
$\mathbb{T}=$ $\cosh_1(t,0)=$
$\mathbb{R}$ $\cosh_1(t,0)=\cosh(t)$
$\mathbb{Z}$
$h\mathbb{Z}$ $\cosh_1(t,0)=\dfrac{1}{2}\left( (1-h)^{\frac{t}{h}} + (1+h)^{\frac{t}{h}}\right) = \displaystyle\sum_{k=0}^{\infty} h_{2k}(t,0) $
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$