Difference between revisions of "Cumulant generating function"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a probability density function a...") |
|||
Line 1: | Line 1: | ||
Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[probability density function]] and let $M_f$ be its associated [[moment generating function]]. The cumulant generating function of $f$ is defined to be | Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[probability density function]] and let $M_f$ be its associated [[moment generating function]]. The cumulant generating function of $f$ is defined to be | ||
$$C_f(z) = \log M_f(z).$$ | $$C_f(z) = \log M_f(z).$$ | ||
+ | |||
+ | =References= | ||
+ | [https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/29595/Matthews_2011.pdf?sequence=1 Probability theory on time scales and applications to finance and inequalities by Thomas Matthews] |
Latest revision as of 17:26, 23 November 2014
Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T}=\infty$. Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ be a probability density function and let $M_f$ be its associated moment generating function. The cumulant generating function of $f$ is defined to be $$C_f(z) = \log M_f(z).$$
References
Probability theory on time scales and applications to finance and inequalities by Thomas Matthews