Difference between revisions of "Probability density function"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T} = \infty$. A function $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is called a probability densit...") |
|||
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T} = \infty$. A function $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is called a probability density function if $f(t) \geq 0$ for all $t \in \mathbb{T}$ and | + | Let $\mathbb{T}$ be a [[time scale]] with $0 \in \mathbb{T}$ and $\sup \mathbb{T} = \infty$. A function $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is called a probability density function if $f(t) \geq 0$ for all $t \in \mathbb{T}$ and |
$$\displaystyle\int_0^{\infty} f(t) \Delta t = 1.$$ | $$\displaystyle\int_0^{\infty} f(t) \Delta t = 1.$$ |
Revision as of 17:14, 23 November 2014
Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$ and $\sup \mathbb{T} = \infty$. A function $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is called a probability density function if $f(t) \geq 0$ for all $t \in \mathbb{T}$ and $$\displaystyle\int_0^{\infty} f(t) \Delta t = 1.$$