Difference between revisions of "Delta Markov inequality"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale with $a \in \mathbb{T}$. Then $$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$ where $X$ is a random variable, $P$ denotes prob...")
 
Line 1: Line 1:
 
Let $\mathbb{T}$ be a time scale with $a \in \mathbb{T}$. Then
 
Let $\mathbb{T}$ be a time scale with $a \in \mathbb{T}$. Then
 
$$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$
 
$$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$
where $X$ is a [[random variable]], $P$ denotes probability, and $\mathbb{E}$ denotes [[expected value]].
+
where $X$ is a [[random variable]], $P$ denotes probability, and $\mathbb{E}_{\mathbb{T}}$ denotes [[expected value]].

Revision as of 22:03, 21 November 2014

Let $\mathbb{T}$ be a time scale with $a \in \mathbb{T}$. Then $$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$ where $X$ is a random variable, $P$ denotes probability, and $\mathbb{E}_{\mathbb{T}}$ denotes expected value.