Difference between revisions of "Gamma distribution"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale. Let $\lamnba \in \mathbb{R}$ with $\lambda > 0$ and define $\Lambda_0(t,t_0)=0, \Lambda_1(t,t_0)=1$. The gamma distribution is the probabil...") |
|||
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a time scale. Let $\ | + | Let $\mathbb{T}$ be a time scale. Let $\lambda \in \mathbb{R}$ with $\lambda > 0$ and define $\Lambda_0(t,t_0)=0, \Lambda_1(t,t_0)=1$. The gamma distribution is the [[probability density function]] defined recursively for $k \geq 2$ by the formula |
$$\Lambda_{k+1}(t,t_0) = -\displaystyle\int_{t_0}^t (\ominus \lambda)(\tau) \Lambda_k(\sigma(\tau),t_0) \Delta \tau.$$ | $$\Lambda_{k+1}(t,t_0) = -\displaystyle\int_{t_0}^t (\ominus \lambda)(\tau) \Lambda_k(\sigma(\tau),t_0) \Delta \tau.$$ |
Revision as of 21:59, 21 November 2014
Let $\mathbb{T}$ be a time scale. Let $\lambda \in \mathbb{R}$ with $\lambda > 0$ and define $\Lambda_0(t,t_0)=0, \Lambda_1(t,t_0)=1$. The gamma distribution is the probability density function defined recursively for $k \geq 2$ by the formula $$\Lambda_{k+1}(t,t_0) = -\displaystyle\int_{t_0}^t (\ominus \lambda)(\tau) \Lambda_k(\sigma(\tau),t_0) \Delta \tau.$$