Difference between revisions of "Nabla integral"

From timescalewiki
Jump to: navigation, search
Line 40: Line 40:
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> The following formula holds:
+
<strong>Theorem (Fundamental theorem of calculus):</strong> The following formula holds:
 
$$\int_a^b f^{\nabla}(t) \nabla t = f(b)-f(a).$$
 
$$\int_a^b f^{\nabla}(t) \nabla t = f(b)-f(a).$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 16:23, 20 October 2014

Theorem: The following formula holds: $$\int_a^b f(t)+g(t) \nabla t = \int_a^b f(t) \nabla t + \int_a^b g(t) \nabla t$$

Proof:

Theorem: The following formula holds: $$\int_a^b \alpha f(t) \nabla t = \alpha \int_a^b f(t) \nabla t$$

Proof:

Theorem: The following formula holds: $$\int_a^b f(t) \nabla t = -\int_b^a f(t) \nabla t$$

Proof:

Theorem: The following formula holds: $$\int_a^b f(t)\nabla t = \int_a^c f(t) \nabla t +\int_c^b f(t) \nabla t$$

Proof:

Theorem: The following formula holds: $$\int_a^a f(t) \nabla t = 0$$

Proof:

Theorem (Fundamental theorem of calculus): The following formula holds: $$\int_a^b f^{\nabla}(t) \nabla t = f(b)-f(a).$$

Proof: