Difference between revisions of "Nabla integral"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$\int_a^b f(t)+g(t) \nabla t = \int_a^b f(t) \...") |
|||
Line 34: | Line 34: | ||
<strong>Theorem:</strong> The following formula holds: | <strong>Theorem:</strong> The following formula holds: | ||
$$\int_a^a f(t) \nabla t = 0$$ | $$\int_a^a f(t) \nabla t = 0$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$\int_a^b f^{\nabla}(t) \nabla t = f(b)-f(a).$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 16:22, 20 October 2014
Theorem: The following formula holds: $$\int_a^b f(t)+g(t) \nabla t = \int_a^b f(t) \nabla t + \int_a^b g(t) \nabla t$$
Proof: █
Theorem: The following formula holds: $$\int_a^b \alpha f(t) \nabla t = \alpha \int_a^b f(t) \nabla t$$
Proof: █
Theorem: The following formula holds: $$\int_a^b f(t) \nabla t = -\int_b^a f(t) \nabla t$$
Proof: █
Theorem: The following formula holds: $$\int_a^b f(t)\nabla t = \int_a^c f(t) \nabla t +\int_c^b f(t) \nabla t$$
Proof: █
Theorem: The following formula holds: $$\int_a^a f(t) \nabla t = 0$$
Proof: █
Theorem: The following formula holds: $$\int_a^b f^{\nabla}(t) \nabla t = f(b)-f(a).$$
Proof: █