Difference between revisions of "Nabla derivative"
(Created page with "Let $\mathbb{T}$ be a time scale. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T...") |
(No difference)
|
Revision as of 10:31, 21 September 2014
Let $\mathbb{T}$ be a time scale. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T}_{\kappa}=\mathbb{T}$. Define the backward graininess function $\nu \colon \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ by $$\nu(t) = t - \rho(t).$$
Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}_{\kappa}$. The $\nabla$-derivative of $f$ at $t$ is denoted by $f^{\nabla}(t)$ to be the number such that given any $\epsilon > 0$ there is a neighborhood $U$ of $t$ and $s \in U$, $$|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]|\leq \epsilon|\rho(t)-s|.$$
References
<a href="http://wwwp.cord.edu/faculty/andersod/p20.pdf">Nabla dynamic equations on time scales - D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran</a>