Difference between revisions of "Exponential functions"
From timescalewiki
Line 13: | Line 13: | ||
|- | |- | ||
|[[Real_numbers | $\mathbb{R}$]] | |[[Real_numbers | $\mathbb{R}$]] | ||
− | |$ | + | |$e_p(t,s)= \left\{ \begin{array}{ll} |
− | e_p(t,s) | + | \exp \left( \displaystyle\int_s^t p(\tau) d \tau \right) & t>s \\ |
− | + | 1 & t=s \\ | |
− | &= \exp \left( \displaystyle\ | + | \exp \left( -\displaystyle\int_t^s p(\tau) d\tau \right) & t<s |
− | \end{array}$ | + | \end{array} \right.$ |
|- | |- | ||
|[[Multiples_of_integers | $h\mathbb{Z}$]] | |[[Multiples_of_integers | $h\mathbb{Z}$]] |
Revision as of 04:04, 18 May 2014
Let $\mathbb{T}$ be a time scale. Define $\xi_h(z) := \dfrac{1}{h} \log(1+zh)$. Let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. The exponential function $e_p \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ is defined as
$$e_p(t,s) := \exp \left( \displaystyle\int_s^t \xi_{\mu(\tau)}(p(\tau))\Delta \tau \right)$$
for $s,t \in \mathbb{T}$. It turns out that $e_p$ is the unique solution to the dynamic initial value problem $$y^{\Delta} = py; y(s)=1.$$
$\mathbb{T}=$ | $e_p(t,s)=$ |
$\mathbb{R}$ | $e_p(t,s)= \left\{ \begin{array}{ll} \exp \left( \displaystyle\int_s^t p(\tau) d \tau \right) & t>s \\ 1 & t=s \\ \exp \left( -\displaystyle\int_t^s p(\tau) d\tau \right) & t<s \end{array} \right.$ |
$h\mathbb{Z}$ | $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log(1 + hp(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\frac{s}{h}}^{\frac{t}{h}-1} \log(1+hp(hk)) \right) \\ &= \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} \left( 1+hp(hk) \right) \\ \end{array}$ |
$\mathbb{Z}^2$ | $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_s^t \dfrac{1}{\mu(\tau)} \log(1 + p(\tau) \mu(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\sqrt{s}}^{\sqrt{t}-1} \mu(k^2) \dfrac{1}{\mu(k^2)} \log ( 1 + p(k^2)\mu(k^2)) \right) \\ &= \exp \left( \displaystyle\sum_{k=\sqrt{s}}^{\sqrt{t}-1} \log ( 1 + p(k^2)\mu(k^2)) \right) \\ &= \displaystyle\prod_{k=\sqrt{s}}^{\sqrt{t}-1} 1 + p(k^2)(2k+1) \end{array}$ |
$\mathbb{H}$ | $\begin{array}{ll} e_p(t,s) &= e_p \left( \displaystyle\sum_{k=1}^n \dfrac{1}{k}, \displaystyle\sum_{k=1}^m \dfrac{1}{k} \right) \\ &= \exp \left( \displaystyle\int_{ \sum^m \frac{1}{k}}^{\sum^n \frac{1}{k}} \dfrac{1}{\mu(\tau)} \log(1 + \mu(\tau) p(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=m}^{n-1} \log \left[1 + \mu \left( \displaystyle\sum_{j=1}^k \dfrac{1}{j} \right) p \left( \displaystyle\sum_{j=1}^k \dfrac{1}{j} \right) \right] \right) \\ &= \exp \left( \displaystyle\sum_{k=m}^{n-1} \log \left[1 + \dfrac{1}{k+1} p \left( \displaystyle\sum_{j=1}^k \dfrac{1}{j} \right) \right] \right) \\ &= \displaystyle\prod_{k=m}^{n-1} 1 + \dfrac{1}{k+1} p \left( \displaystyle\sum_{j=1}^k \dfrac{1}{j} \right) \\ \end{array}$ |