Difference between revisions of "Delta Lyapunov inequality"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and [c...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and [continuity | rd-continuous]. If the [[Sturm-Liouville dynamic equation]]
+
<strong>Theorem:</strong> Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and [[continuity | rd-continuous]]. If the [[Sturm-Liouville dynamic equation]]
 
$$x^{\Delta^2} + p(t) x^{\sigma} = 0$$
 
$$x^{\Delta^2} + p(t) x^{\sigma} = 0$$
 
has a nontrivial solution $x$ with $x(a)=x(b)=0$, then the Lyapunov inequality  
 
has a nontrivial solution $x$ with $x(a)=x(b)=0$, then the Lyapunov inequality  

Revision as of 07:12, 10 September 2014

Theorem: Let $p \colon \mathbb{T} \rightarrow \mathbb{R}^+$ be positive-valued and rd-continuous. If the Sturm-Liouville dynamic equation $$x^{\Delta^2} + p(t) x^{\sigma} = 0$$ has a nontrivial solution $x$ with $x(a)=x(b)=0$, then the Lyapunov inequality $$\displaystyle\int_a^b p(t) \Delta t \geq \dfrac{b-a}{f(d)}$$ holds, where $f \colon \mathbb{T} \rightarrow \mathbb{R}$ is defined by $$f(t) = (t-a)(b-t)$$ and $d \in \mathbb{T}$ is such that $$\left| \dfrac{a+b}{2} - d \right| = \min \left\{ \left| \dfrac{a+b}{2} -s \right| \colon s \in [a,b] \cap \mathbb{T} \right\}.$$

Proof:

References

R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey