Difference between revisions of "Convergence of time scales"

From timescalewiki
Jump to: navigation, search
(Created page with "The set of time scales is the [http://dualaud.net/hyperspacewiki/index.php/Hyperspace hyperspace] $\mathrm{CL}(\mathbb{R})$. There are three popular [http://d...")
 
Line 1: Line 1:
The set of [[time_scale | time scales]] is the [http://dualaud.net/hyperspacewiki/index.php/Hyperspace hyperspace] $\mathrm{CL}(\mathbb{R})$. There are three popular [http://dualaud.net/hyperspacewiki/index.php/Topological_space topologies] on hyperspaces that we will investigate: the induced topology by the [http://dualaud.net/hyperspacewiki/index.php/Hausdorff_metric Hausdorff metric], the [http://dualaud.net/hyperspacewiki/index.php/Vietoris_topology Vietoris topology], and the [http://dualaud.net/hyperspacewiki/index.php?title=Fell_topology Fell topology].
+
The set of [[time_scale | time scales]] is the [http://dualaud.net/hyperspacewiki/index.php/Hyperspace hyperspace] $\mathrm{CL}(\mathbb{R})$. There are three popular [http://dualaud.net/hyperspacewiki/index.php/Topological_space topologies] on hyperspaces: the induced topology by the [http://dualaud.net/hyperspacewiki/index.php/Hausdorff_metric Hausdorff metric], the [http://dualaud.net/hyperspacewiki/index.php/Vietoris_topology Vietoris topology], and the [http://dualaud.net/hyperspacewiki/index.php?title=Fell_topology Fell topology].
  
 
==Which topology should be used on $\mathrm{CL}(\mathbb{R})$?==
 
==Which topology should be used on $\mathrm{CL}(\mathbb{R})$?==
 
Let $\{\mathbb{T}_n\}_{n=0}^{\infty}$ be a countable sequence of time scales.
 
Let $\{\mathbb{T}_n\}_{n=0}^{\infty}$ be a countable sequence of time scales.

Revision as of 19:36, 28 August 2014

The set of time scales is the hyperspace $\mathrm{CL}(\mathbb{R})$. There are three popular topologies on hyperspaces: the induced topology by the Hausdorff metric, the Vietoris topology, and the Fell topology.

Which topology should be used on $\mathrm{CL}(\mathbb{R})$?

Let $\{\mathbb{T}_n\}_{n=0}^{\infty}$ be a countable sequence of time scales.