Difference between revisions of "Real numbers"
From timescalewiki
(Created page with "The set $\mathbb{R}$ of real numbers is a time scale.") |
|||
Line 1: | Line 1: | ||
The set $\mathbb{R}$ of real numbers is a [[time scale]]. | The set $\mathbb{R}$ of real numbers is a [[time scale]]. | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |+$\mathbb{T}=\mathbb{R}$ | ||
+ | |- | ||
+ | |Jump operator: | ||
+ | |$\sigma(t)=t$ | ||
+ | |- | ||
+ | |Graininess operator: | ||
+ | |$\mu(t)=0$ | ||
+ | |- | ||
+ | |$\Delta$-derivative: | ||
+ | |$f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}$ | ||
+ | |- | ||
+ | |$\Delta$-integral: | ||
+ | | $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\int_s^t f(\tau) d\tau$ is the Riemann integral | ||
+ | |} |
Revision as of 03:34, 18 May 2014
The set $\mathbb{R}$ of real numbers is a time scale.
Jump operator: | $\sigma(t)=t$ |
Graininess operator: | $\mu(t)=0$ |
$\Delta$-derivative: | $f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}$ |
$\Delta$-integral: | $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\int_s^t f(\tau) d\tau$ is the Riemann integral |