Difference between revisions of "Bilateral Laplace transform"

From timescalewiki
Jump to: navigation, search
(See also)
 
Line 4: Line 4:
  
 
=See also=
 
=See also=
[[Laplace transform]]<br />
+
[[Unilateral Laplace transform]]<br />
 
[[Cuchta-Georgiev Fourier transform]]<br />
 
[[Cuchta-Georgiev Fourier transform]]<br />
  

Latest revision as of 15:12, 21 January 2023

Let $\mathbb{T}$ be a time scale. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by $$\mathscr{L}_{\mathbb{T}}^b(z;s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t,$$ where $e_{\ominus z}$ denotes the delta exponential and $\ominus z$ denotes forward circle minus.

See also

Unilateral Laplace transform
Cuchta-Georgiev Fourier transform

References