Difference between revisions of "Bilateral Laplace transform"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]]. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by
 
Let $\mathbb{T}$ be a [[time scale]]. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by
 
$$\mathscr{L}_{\mathbb{T}}^b(z;s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t,$$
 
$$\mathscr{L}_{\mathbb{T}}^b(z;s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t,$$
where $e_{\ominus z}$ denotes the [[delta exponential]].
+
where $e_{\ominus z}$ denotes the [[delta exponential]] and $\ominus z$ denotes [[forward circle minus]].
  
 
=See also=
 
=See also=

Revision as of 12:50, 16 January 2023

Let $\mathbb{T}$ be a time scale. The Bilateral Laplace transform of a function $f \colon \mathbb{T} \rightarrow \mathbb{T}$ centered at $s$ is given by $$\mathscr{L}_{\mathbb{T}}^b(z;s)=\displaystyle\int_{-\infty}^{\infty} f(t)e_{\ominus z}(\sigma(t),s) \Delta t,$$ where $e_{\ominus z}$ denotes the delta exponential and $\ominus z$ denotes forward circle minus.

See also

Laplace transform
Cuchta-Georgiev Fourier transform

References