Difference between revisions of "Bracket factorial"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. Define the bracket factorial by $$[n]_{\mathbb{T}}! = \left\{ \begin{array}{ll} 1&; n=0 \\ \displaystyle\prod_{j=1}^n [j]_{\mathbb{T}} &;...")
 
Line 5: Line 5:
 
\end{array} \right.,$$
 
\end{array} \right.,$$
 
where $[j]_{\mathbb{T}}$ denotes a [[bracket number]].
 
where $[j]_{\mathbb{T}}$ denotes a [[bracket number]].
 +
 +
=Properties=
 +
[[Gamma function on certain time scales at bracket number equals bracket factorial]]
  
 
=See also=
 
=See also=

Revision as of 18:08, 15 January 2023

Let $\mathbb{T}$ be a time scale. Define the bracket factorial by $$[n]_{\mathbb{T}}! = \left\{ \begin{array}{ll} 1&; n=0 \\ \displaystyle\prod_{j=1}^n [j]_{\mathbb{T}} &; n=1,2,\ldots \end{array} \right.,$$ where $[j]_{\mathbb{T}}$ denotes a bracket number.

Properties

Gamma function on certain time scales at bracket number equals bracket factorial

See also

Gamma function

References