Difference between revisions of "Cuchta-Georgiev Fourier transform"

From timescalewiki
Jump to: navigation, search
(Examples)
Line 15: Line 15:
 
|-
 
|-
 
|[[Real_numbers | $\mathbb{R}$]]
 
|[[Real_numbers | $\mathbb{R}$]]
|$\mathcal{F}\{f\}(z;s)= \displaystyle\int_{-\infty}^{\infty} f(t)e^{2\pi izt} \mathrm{d}t$
+
|$\mathcal{F}\{f\}(z;s)= \displaystyle\int_{-\infty}^{\infty} f(t)e^{-izt} \mathrm{d}t$
 
|-
 
|-
 
|[[Integers | $\mathbb{Z}$]]
 
|[[Integers | $\mathbb{Z}$]]
|$\mathcal{F}\{f\}(z;s) = \displaystyle\sum_{k=-\infty}^{\infty} f(k)e^{2\pi izk} $
+
|$\mathcal{F}\{f\}(z;s) = $
 
|-
 
|-
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]
| $\mathcal{F}\{f\}(z;s) = h\displaystyle\sum_{k=-\infty}^{\infty} f(hk) e^{2\pi i zhk}$
+
| $\mathcal{F}\{f\}(z;s) = h\displaystyle\sum_{k=-\infty}^{\infty} \dfrac{f(hk)}{(1+hiz)^{k+1-\frac{s}{h}}}$
 
|-
 
|-
 
| [[Square_integers | $\mathbb{Z}^2$]]
 
| [[Square_integers | $\mathbb{Z}^2$]]
Line 36: Line 36:
 
|}
 
|}
 
</center>
 
</center>
 
  
 
=See also=
 
=See also=

Revision as of 16:45, 15 January 2023

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be regulated. Define the Cuchta-Georgiev Fourier transform of $f$ centered at $s$ by $$\mathcal{F}_{\mathbb{T}}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus iz}(\sigma(t),\tau) \Delta \tau,$$ where $\ominus$ denotes the forward circle minus operation and $e_{\ominus iz}$ denotes the delta exponential.

Properties

Cuchta-Georgiev Fourier transform of delta derivatives

Examples

Marks-Gravagne-Davis Fourier transform on various time scales
$\mathbb{T}$
$\mathbb{R}$ $\mathcal{F}\{f\}(z;s)= \displaystyle\int_{-\infty}^{\infty} f(t)e^{-izt} \mathrm{d}t$
$\mathbb{Z}$ $\mathcal{F}\{f\}(z;s) = $
$h\mathbb{Z}$ $\mathcal{F}\{f\}(z;s) = h\displaystyle\sum_{k=-\infty}^{\infty} \dfrac{f(hk)}{(1+hiz)^{k+1-\frac{s}{h}}}$
$\mathbb{Z}^2$ $\mathcal{F}\{f\}(z;s) = $
$\overline{q^{\mathbb{Z}}}, q > 1$ $\mathcal{F}\{f\}(z;s) = $
$\overline{q^{\mathbb{Z}}}, q < 1$ $\mathcal{F}\{f\}(z;s) =$
$\mathbb{H}$ $\mathcal{F}\{f\}(z;s) = $

See also

Marks-Gravagne-Davis Fourier transform

References