Difference between revisions of "Cuchta-Georgiev Fourier transform"
From timescalewiki
Line 2: | Line 2: | ||
$$\mathcal{F}_{\mathbb{T}}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus iz}(\sigma(t),\tau) \Delta \tau,$$ | $$\mathcal{F}_{\mathbb{T}}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus iz}(\sigma(t),\tau) \Delta \tau,$$ | ||
where $\ominus$ denotes the [[circle minus]] operation and $e_{\ominus iz}$ denotes the [[delta exponential]]. | where $\ominus$ denotes the [[circle minus]] operation and $e_{\ominus iz}$ denotes the [[delta exponential]]. | ||
+ | |||
+ | =Properties= | ||
+ | [[Cuchta-Georgiev Fourier transform of delta derivatives]] | ||
=See also= | =See also= |
Revision as of 16:42, 15 January 2023
Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be regulated. Define the Cuchta-Georgiev Fourier transform of $f$ centered at $s$ by $$\mathcal{F}_{\mathbb{T}}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus iz}(\sigma(t),\tau) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation and $e_{\ominus iz}$ denotes the delta exponential.
Properties
Cuchta-Georgiev Fourier transform of delta derivatives
See also
Marks-Gravagne-Davis Fourier transform
References
- Tom Cuchta and Svetlin Georgiev: Analysis of the bilateral Laplace transform on time scales with applications (2021): Definition 4.1 (15)