Difference between revisions of "Marks-Gravagne-Davis Fourier Transform"

From timescalewiki
Jump to: navigation, search
 
 
Line 1: Line 1:
#REDIRECT [[Marks-Gravagne-Davis Fourier transform]]
+
Let $\mathbb{T}$ be a [[time scale]] and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by
 +
$$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$
 +
where $\ominus$ denotes the [[circle minus]] operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the [[delta exponential]], and $\mathring{\iota}$ denotes the [[Hilger pure imaginary]].
 +
 
 +
=References=
 +
[http://web.ecs.baylor.edu/faculty/gravagnei/archived/Fourier.pdf]

Latest revision as of 15:53, 15 January 2023

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the delta exponential, and $\mathring{\iota}$ denotes the Hilger pure imaginary.

References

[1]