Difference between revisions of "Mozyraska-Torres logarithm is negative on (0,1)"
From timescalewiki
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$. ==Proof== ==References== {{PaperReference|The Natural Loga...") |
|||
Line 5: | Line 5: | ||
==References== | ==References== | ||
− | {{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next= | + | {{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next=Mozyrska-Torres logarithm is positive on (1,infinity)}} |
Revision as of 15:22, 21 October 2017
Theorem
Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$.
Proof
References
Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2009)... (previous)... (next)