Difference between revisions of "Unilateral Laplace transform"
(→Properties of Laplace Transforms) |
|||
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a [[time_scale | time scale]] and let $s \in \mathbb{T}$. If $f \in C_{rd}(\mathbb{T},\mathbb{C})$ ([[continuity | rd-continuous]]) then we define the Laplace transform of $f$ about $s$ by the formula | + | Let $\mathbb{T}$ be a [[time_scale | time scale]] and let $s \in \mathbb{T}$. If $f \in C_{rd}(\mathbb{T},\mathbb{C})$ ([[continuity | rd-continuous]]) then we define the Laplace transform of $f$ about $s$ by the formula <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.793.</ref> |
$$\mathscr{L}\{f\}(z;s) = \displaystyle\int_s^{\infty} f(t) e_{\ominus z}(\sigma(t),0) \Delta t,$$ | $$\mathscr{L}\{f\}(z;s) = \displaystyle\int_s^{\infty} f(t) e_{\ominus z}(\sigma(t),0) \Delta t,$$ | ||
where $z$ lives in a domain $D \subset \mathbb{C}$ for which the integral converges. Let $\alpha$ be a non-negative [[regressive_function | regressive]] constant larger than $s$. We use the notation "$f(t;s)$" to denote we are thinking of $f$ as a function of $t$ with parameter $s$. | where $z$ lives in a domain $D \subset \mathbb{C}$ for which the integral converges. Let $\alpha$ be a non-negative [[regressive_function | regressive]] constant larger than $s$. We use the notation "$f(t;s)$" to denote we are thinking of $f$ as a function of $t$ with parameter $s$. | ||
Line 30: | Line 30: | ||
==Properties of Laplace Transforms== | ==Properties of Laplace Transforms== | ||
− | *The Laplace transform is linear, i.e. for constants $\alpha, \beta$ and Laplace-transformable functions $f,g$, | + | *The Laplace transform is linear, i.e. for constants $\alpha, \beta$ and Laplace-transformable functions $f,g$, <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.795.</ref> |
$$\mathscr{L}\{\alpha f + \beta g\} = \alpha \mathscr{L}\{f\} + \beta \mathscr{L}\{g\}.$$ | $$\mathscr{L}\{\alpha f + \beta g\} = \alpha \mathscr{L}\{f\} + \beta \mathscr{L}\{g\}.$$ | ||
*Assume there exist $M,\alpha > 0$ with | *Assume there exist $M,\alpha > 0$ with | ||
$$|a_k| \leq M \alpha_k$$ | $$|a_k| \leq M \alpha_k$$ | ||
− | for all $k=0,1,2,\ldots$. Then for all $z$ where it exists, | + | for all $k=0,1,2,\ldots$. Then for all $z$ where it exists, <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.796.</ref> |
$$\mathscr{L}\left\{ \displaystyle\sum_{k=0}^{\infty} a_k h_k(\cdot,s) \right\}(z;s) = \displaystyle\sum_{k=0}^{\infty} a_k \mathscr{L}\{h_k(\cdot,s)\}(z;s) = \displaystyle\sum_{k=0}^{\infty} \dfrac{a_k}{z^{k+1}},$$ | $$\mathscr{L}\left\{ \displaystyle\sum_{k=0}^{\infty} a_k h_k(\cdot,s) \right\}(z;s) = \displaystyle\sum_{k=0}^{\infty} a_k \mathscr{L}\{h_k(\cdot,s)\}(z;s) = \displaystyle\sum_{k=0}^{\infty} \dfrac{a_k}{z^{k+1}},$$ | ||
where $h_k$ denotes the standard time scale [[Polynomials | polynomial]]. | where $h_k$ denotes the standard time scale [[Polynomials | polynomial]]. | ||
− | *Let $m_z(t,s):=\displaystyle\int_s^t \dfrac{\Delta \tau}{1+\mu(\tau)z}$. Then | + | *Let $m_z(t,s):=\displaystyle\int_s^t \dfrac{\Delta \tau}{1+\mu(\tau)z}$. Then <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.797.</ref> |
$$\dfrac{d}{dz} \mathscr{L}\{f\}(z;s) = -\mathscr{L}\{m_z(\sigma(\cdot),s)f\}(z;s).$$ | $$\dfrac{d}{dz} \mathscr{L}\{f\}(z;s) = -\mathscr{L}\{m_z(\sigma(\cdot),s)f\}(z;s).$$ | ||
+ | |||
+ | <references /> |
Revision as of 13:56, 9 June 2014
Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. If $f \in C_{rd}(\mathbb{T},\mathbb{C})$ ( rd-continuous) then we define the Laplace transform of $f$ about $s$ by the formula <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.793.</ref> $$\mathscr{L}\{f\}(z;s) = \displaystyle\int_s^{\infty} f(t) e_{\ominus z}(\sigma(t),0) \Delta t,$$ where $z$ lives in a domain $D \subset \mathbb{C}$ for which the integral converges. Let $\alpha$ be a non-negative regressive constant larger than $s$. We use the notation "$f(t;s)$" to denote we are thinking of $f$ as a function of $t$ with parameter $s$.
Function $f(t;s)$ | Laplace Transformation $\mathscr{L}\{f(\cdot;s)\}(z)$ |
$e_{\alpha}(t;s)$ | $\dfrac{1}{z-\alpha}$ |
$h_n(t;s)$ | $\dfrac{1}{z^{n+1}}$ |
$\sinh_{\alpha}(t;s)$ | $\dfrac{\alpha}{z^2-\alpha^2}$ |
$\cosh_{\alpha}(t;s)$ | $\dfrac{z}{z^2-\alpha^2}$ |
$\sin_{\alpha}(t;s)$ | $\dfrac{\alpha}{z^2+\alpha^2}$ |
$\cos_{\alpha}(t;s)$ | $\dfrac{z}{z^2+\alpha^2}$ |
Properties of Laplace Transforms
- The Laplace transform is linear, i.e. for constants $\alpha, \beta$ and Laplace-transformable functions $f,g$, <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.795.</ref>
$$\mathscr{L}\{\alpha f + \beta g\} = \alpha \mathscr{L}\{f\} + \beta \mathscr{L}\{g\}.$$
- Assume there exist $M,\alpha > 0$ with
$$|a_k| \leq M \alpha_k$$ for all $k=0,1,2,\ldots$. Then for all $z$ where it exists, <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.796.</ref> $$\mathscr{L}\left\{ \displaystyle\sum_{k=0}^{\infty} a_k h_k(\cdot,s) \right\}(z;s) = \displaystyle\sum_{k=0}^{\infty} a_k \mathscr{L}\{h_k(\cdot,s)\}(z;s) = \displaystyle\sum_{k=0}^{\infty} \dfrac{a_k}{z^{k+1}},$$ where $h_k$ denotes the standard time scale polynomial.
- Let $m_z(t,s):=\displaystyle\int_s^t \dfrac{\Delta \tau}{1+\mu(\tau)z}$. Then <ref>Bohner, Martin ; Guseinov, Gusein Sh. ; Karpuz, Başak . Properties of the Laplace transform on time scales with arbitrary graininess. Integral Transforms Spec. Funct. 22 (2011), no. 11, pp.797.</ref>
$$\dfrac{d}{dz} \mathscr{L}\{f\}(z;s) = -\mathscr{L}\{m_z(\sigma(\cdot),s)f\}(z;s).$$
<references />