Difference between revisions of "Mozyrska-Torres logarithm"

From timescalewiki
Jump to: navigation, search
Line 8: Line 8:
 
*$L_{\mathbb{T}}(\cdot)$ is increasing and continuous
 
*$L_{\mathbb{T}}(\cdot)$ is increasing and continuous
 
*$L_{\mathbb{T}}(\sigma(t))=L_{\mathbb{T}}(t)+\mu(t)L_{\mathbb{T}}^{\Delta}(t)=L_{\mathbb{T}}(t)+\dfrac{\mu(t)}{t}$
 
*$L_{\mathbb{T}}(\sigma(t))=L_{\mathbb{T}}(t)+\mu(t)L_{\mathbb{T}}^{\Delta}(t)=L_{\mathbb{T}}(t)+\dfrac{\mu(t)}{t}$
 +
 +
=See also=
 +
[[Bohner logarithm]]<br />
 +
[[Euler-Cauchy logarithm]]<br />
 +
[[Jackson logarithm]]<br />
  
 
=References=
 
=References=

Revision as of 17:09, 11 February 2017

Let $\mathbb{T}$ be a time scale of positive numbers including $1$ and at least one other point $t$ such that $0< t < 1$. For $t \in \mathbb{T} \cap (0,\infty)$, define $$L_{\mathbb{T}}(t) = \displaystyle\int_1^t \dfrac{1}{\tau} \Delta \tau.$$

Properties

Delta derivative of Mozyrska-Torres logarithm
Mozyrska-Torres logarithm at 1

  • $L_{\mathbb{R}}(t)=\log(t)$
  • $L_{\mathbb{T}}(\cdot)$ is increasing and continuous
  • $L_{\mathbb{T}}(\sigma(t))=L_{\mathbb{T}}(t)+\mu(t)L_{\mathbb{T}}^{\Delta}(t)=L_{\mathbb{T}}(t)+\dfrac{\mu(t)}{t}$

See also

Bohner logarithm
Euler-Cauchy logarithm
Jackson logarithm

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2009)... (previous)... (next): page 1