Difference between revisions of "Bohner logarithm"
From timescalewiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
[[Bohner logarithm sub a product]]<br /> | [[Bohner logarithm sub a product]]<br /> | ||
+ | |||
+ | =See also= | ||
+ | [[Euler-Cauchy logarithm]]<br /> | ||
+ | [[Jackson logarithm]]<br /> | ||
+ | [[Mozyrska-Torres logarithm]]<br /> | ||
=References= | =References= | ||
{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (3) | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (3) |
Revision as of 23:03, 10 February 2017
Let $\mathbb{T}$ be a time scale and let $p \mathbb{T} \rightarrow \mathbb{C}$ delta differentiable. The Bohner logarithm is defined by $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$
Properties
Bohner logarithm sub a product
See also
Euler-Cauchy logarithm
Jackson logarithm
Mozyrska-Torres logarithm
References
Martin Bohner: The logarithm on time scales (2005)... (previous)... (next): (3)