Difference between revisions of "Forward regressive"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$  
 
Let $\mathbb{T}$ be a [[time_scale | time scale]]. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$  
 
$$1+\mu(t)p(t)\neq 0.$$
 
$$1+\mu(t)p(t)\neq 0.$$
We call the set of forward regressive functions with domain $\mathbb{T}$ and codomain $Y$ by $\mathcal{R}(\mathbb{T},Y)$.
+
We use the notation $\mathcal{R}(\mathbb{T},Y)$ for forward regressive functions with domain $\mathbb{T}$ and codomain $Y$.
  
 
=See also=
 
=See also=

Revision as of 22:39, 10 February 2017

Let $\mathbb{T}$ be a time scale. Let $p \colon \mathbb{T} \rightarrow \mathbb{C}$. We say that $p$ is forward regressive if for all $t \in \mathbb{T}^{\kappa}$ $$1+\mu(t)p(t)\neq 0.$$ We use the notation $\mathcal{R}(\mathbb{T},Y)$ for forward regressive functions with domain $\mathbb{T}$ and codomain $Y$.

See also

References