Difference between revisions of "Unilateral Laplace transform"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. For an appropriate $D \subset \mathbb{R}$ we define the Laplace transfo...")
 
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time_scale | time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. For an appropriate $D \subset \mathbb{R}$ we define the Laplace transform of $f$, $\mathscr{L}\{f\} \colon D \rightarrow \mathbb{R}$ by the formula
 
Let $\mathbb{T}$ be a [[time_scale | time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. For an appropriate $D \subset \mathbb{R}$ we define the Laplace transform of $f$, $\mathscr{L}\{f\} \colon D \rightarrow \mathbb{R}$ by the formula
 
$$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\infty} f(t) e_{\ominus z}(\sigma(t),0) \Delta t.$$
 
$$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\infty} f(t) e_{\ominus z}(\sigma(t),0) \Delta t.$$
 +
 +
Let $s \in \mathbb{T}$. Let $\alpha$ be a non-negative [[regressive_function | regressive]] constant larger than $s$. We use the notation "$f(t;s)$" to denote we are thinking of $f$ as a function of $t$ with parameter $s$.
 +
 +
{| class="wikitable"
 +
|+Laplace Transformations
 +
|-
 +
|Function
 +
|Laplace Transformation
 +
|-
 +
|$e_{\alpha}(t;s)$
 +
|$\dfrac{1}{z-\alpha}$
 +
|-
 +
|$h_n(t;s)$
 +
|$\dfrac{1}{z^{n+1}}$
 +
|-
 +
|$\sinh_{\alpha}(t;s)$
 +
|$\dfrac{\alpha}{z^2-\alpha^2}$
 +
|-
 +
|$\cosh_{\alpha}(t;s)$
 +
|$\dfrac{z}{z^2-\alpha^2}$
 +
|-
 +
|$\sin_{\alpha}(t;s)$
 +
|$\dfrac{\alpha}{z^2+\alpha^2}$
 +
|-
 +
|$\cos_{\alpha}(t;s)$
 +
|$\dfrac{z}{z^2+\alpha^2}$
 +
|-
 +
 +
|}

Revision as of 18:44, 26 May 2014

Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. For an appropriate $D \subset \mathbb{R}$ we define the Laplace transform of $f$, $\mathscr{L}\{f\} \colon D \rightarrow \mathbb{R}$ by the formula $$\mathscr{L}\{f\}(z) = \displaystyle\int_0^{\infty} f(t) e_{\ominus z}(\sigma(t),0) \Delta t.$$

Let $s \in \mathbb{T}$. Let $\alpha$ be a non-negative regressive constant larger than $s$. We use the notation "$f(t;s)$" to denote we are thinking of $f$ as a function of $t$ with parameter $s$.

Laplace Transformations
Function Laplace Transformation
$e_{\alpha}(t;s)$ $\dfrac{1}{z-\alpha}$
$h_n(t;s)$ $\dfrac{1}{z^{n+1}}$
$\sinh_{\alpha}(t;s)$ $\dfrac{\alpha}{z^2-\alpha^2}$
$\cosh_{\alpha}(t;s)$ $\dfrac{z}{z^2-\alpha^2}$
$\sin_{\alpha}(t;s)$ $\dfrac{\alpha}{z^2+\alpha^2}$
$\cos_{\alpha}(t;s)$ $\dfrac{z}{z^2+\alpha^2}$