Difference between revisions of "Regulated"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. We say that $f$ is regulated if for all [[right dense]] points $t_1 \in \mathbb{T}$, $\displaystyle\lim_{\xi \rightarrow t^+} f(\xi)$ exists and for all [[left dense]] points $t_2 \in \mathbb{T}$, $\displaystyle\lim_{\xi \rightarrow t^-} f(\xi)$ exists.
+
Let $\mathbb{T}$ be a [[time scale]] and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. We say that $f$ is regulated if for all [[right dense]] points $t_1 \in \mathbb{T}$, $\displaystyle\lim_{\xi \rightarrow t_1^+} f(\xi)$ exists and for all [[left dense]] points $t_2 \in \mathbb{T}$, $\displaystyle\lim_{\xi \rightarrow t_2^-} f(\xi)$ exists.
  
 
=References=
 
=References=
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=findme|next=Rd-continuous}}: Definition $1.57$
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=findme|next=Rd-continuous}}: Definition $1.57$

Revision as of 23:36, 4 January 2017

Let $\mathbb{T}$ be a time scale and let $f \colon \mathbb{T} \rightarrow \mathbb{R}$. We say that $f$ is regulated if for all right dense points $t_1 \in \mathbb{T}$, $\displaystyle\lim_{\xi \rightarrow t_1^+} f(\xi)$ exists and for all left dense points $t_2 \in \mathbb{T}$, $\displaystyle\lim_{\xi \rightarrow t_2^-} f(\xi)$ exists.

References