Difference between revisions of "Timescalecalculus python library documentation"
(→Delta exponential $e_p(t,s)$) |
|||
Line 57: | Line 57: | ||
=Special functions= | =Special functions= | ||
==Delta exponential $e_p(t,s)$== | ==Delta exponential $e_p(t,s)$== | ||
− | + | ===On $\mathbb{T}=\{1,2,3,4,5\}$=== | |
+ | Then the [[delta exponential]] $e_1(3,1)$ is given by | ||
$$e_1(3,1) = \displaystyle\prod_{k=1}^2 1+\mu(k)(1)=2^{2}=4$$ | $$e_1(3,1) = \displaystyle\prod_{k=1}^2 1+\mu(k)(1)=2^{2}=4$$ | ||
<pre>>>> ts=[1,2,3,4,5] | <pre>>>> ts=[1,2,3,4,5] |
Revision as of 11:05, 24 December 2016
This is the documentation for the Python repository timescalecalculus.
Contents
The basics
After extracting the files, open a Python instance in its folder and type
>>> from timescalecalculus import *
Right now, a time scale in this library can consist of only a finite list of numbers. Fraction types are available.
Let $\mathbb{T}=\left\{0,\dfrac{1}{3},\dfrac{1}{2},\dfrac{7}{9},1,2,3,4,5,6,7 \right\}$.
>>> ts=[0,Fraction(1,3),Fraction(1,2),Fraction(7,9),1,2,3,4,5,6,7]
Forward jump and graininess
The forward jump $\sigma$ can be computed:
$\sigma(0)=\dfrac{1}{3}$
>>> sigma(0,ts) Fraction(1, 3)
$\sigma(4)=5$
>>> sigma(4,ts) 5
$\sigma(7)=7$
>>> sigma(7,ts) 7
The forward graininess $\mu$ can be computed:
$\mu \left( \dfrac{1}{3} \right)=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}$
>>> mu(Fraction(1,3),ts) Fraction(1, 6)
Backward jump and graininess
The backward jump $\rho$ can be used:
$\rho(1)=\dfrac{7}{9}$
>>> rho(1,ts) Fraction(7, 9)
$\rho(3)=2$
>>> rho(3,ts) 2
$\rho(0)=0$
>>> rho(0,ts) 0
The backward graininess $\nu$ can be computed:
$\nu\left( \dfrac{7}{9} \right)=\dfrac{7}{9}-\dfrac{1}{2}=\dfrac{5}{18}$
>>> nu(Fraction(7,9),ts) Fraction(5, 18)
Delta-derivative
The delta derivative works as expected. The delta derivative of a constant is zero:
>>> dderivative(lambda x: 1,5,ts) 0
and obeying the delta derivative of squaring function, we see
>>> dderivative(lambda x: x*x,5,ts) 11
The delta exponential is supported. For example if $\mathbb{T}=\{1,2,3,4,5,6,7\}$ then $e_1(3,1)=(1+\mu(1))(1+\mu(2))=(2)(2)=4$ which is correctly computed:
>>> dexpf(lambda x: 1, 3, 1, ts) 4
Special functions
Delta exponential $e_p(t,s)$
On $\mathbb{T}=\{1,2,3,4,5\}$
Then the delta exponential $e_1(3,1)$ is given by $$e_1(3,1) = \displaystyle\prod_{k=1}^2 1+\mu(k)(1)=2^{2}=4$$
>>> ts=[1,2,3,4,5] >>> dexpf(3,1,ts) >>> dexpf(lambda x: 1,3,1,ts) 4
The function $e_2(3,1)$ is given by $$e_2(3,1) = \displaystyle\prod_{k=1}^2 1+\mu(k)(2)=3^2=9$$
>>> dexpf(lambda x: 2,3,1,ts) 9
The function $e_{\mathrm{id}}(3,1)$ (where $\mathrm{id}$ is the identity function on $\mathbb{T}$) is given by $$e_{\mathrm{id}}(3,1)=\displaystyle\prod_{k=1}^2 1+\mu(k)k=(1+(1)(1))(1+(1)(2))=6$$
>>> dexpf(lambda x: x,3,1,ts) 6
The function $e_{e_1(\cdot,1)}(3,1)$ is given by $$e_{e_1(\cdot,1)}(4,1)=\displaystyle\prod_{k=1}^3 1+\mu(k)e_1(k,1)=(1+(1)e_1(1,1))(1+(1)e_1(2,1))(1+(1)e_1(3,1))=(2)(3)(5)=30$$
>>> (1+dexpf(lambda x: 1,1,1,ts))*(1+dexpf(lambda x: 1,2,1,ts))*(1+dexpf(lambda x: 1,3,1,ts)) 30