Difference between revisions of "Backward graininess"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by $$\nu(t) = t-\rho(t).$$")
 
 
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]]. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by
 
Let $\mathbb{T}$ be a [[time scale]]. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by
$$\nu(t) = t-\rho(t).$$
+
$$\nu(t) = t-\rho(t),$$
 +
where $\rho$ denotes the [[backward graininess]].

Latest revision as of 06:34, 23 December 2016

Let $\mathbb{T}$ be a time scale. The backward graininess function $\nu \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by $$\nu(t) = t-\rho(t),$$ where $\rho$ denotes the backward graininess.