Difference between revisions of "Cylinder transformation"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. We define the cylinder transformation $\xi_h \colon \mathbb{C}_h \rightarrow \mathbb{Z}_h$, where $\mathbb{C}_h$ denotes the Hilger com...")
 
Line 2: Line 2:
 
$$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$
 
$$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$
 
where $\mathrm{Log}$ denotes the principal logarithm.
 
where $\mathrm{Log}$ denotes the principal logarithm.
 +
 +
=See also=
 +
[[Delta exponential]]<br />
 +
 +
[[Category:Definition]]

Revision as of 02:15, 2 December 2016

Let $\mathbb{T}$ be a time scale. We define the cylinder transformation $\xi_h \colon \mathbb{C}_h \rightarrow \mathbb{Z}_h$, where $\mathbb{C}_h$ denotes the Hilger complex plane and $\mathbb{Z}_h=\left\{ z \in \mathbb{C} \colon -\dfrac{\pi}{h} < \mathrm{Im}(z) \leq \dfrac{\pi}{h} \right\}$, and is defined by the formula $$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$ where $\mathrm{Log}$ denotes the principal logarithm.

See also

Delta exponential