Difference between revisions of "Expected value of uniform distribution"

From timescalewiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Expected value of uniform distribution|Proposition]]:</strong> Let $X$ have the [[uniform distribution]] on $[a,b] \cap \mathbb{T}$. Then,
+
Let $X$ have the [[uniform distribution]] on $[a,b] \cap \mathbb{T}$. Then,
$$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a.$$
+
$$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a,$$
<div class="mw-collapsible-content">
+
where $h_2$ denotes the [[delta hk]] and $\sigma$ denotes the [[forward jump]].
<strong>Proof:</strong> █
+
 
</div>
+
==Proof==
</div>
+
 
 +
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 00:22, 24 September 2016

Theorem

Let $X$ have the uniform distribution on $[a,b] \cap \mathbb{T}$. Then, $$\mathrm{E}_{\mathbb{T}}(X) = \dfrac{h_2(\sigma(b),a)}{\sigma(b)-a}+a,$$ where $h_2$ denotes the delta hk and $\sigma$ denotes the forward jump.

Proof

References