Difference between revisions of "Forward regressive"
(→Related definitions) |
|||
Line 5: | Line 5: | ||
We define the inverse operation of $\oplus$ by the formula | We define the inverse operation of $\oplus$ by the formula | ||
$(\ominus p)(t) = -\dfrac{p(t)}{1+\mu(t)p(t)}$. | $(\ominus p)(t) = -\dfrac{p(t)}{1+\mu(t)p(t)}$. | ||
− | The ordered pair $(\mathcal{R},\oplus)$ is an [[Abelian_group | Abelian group]] with subtraction $(p \ominus q)(t) = (p \oplus (\ominus q))(t) = \dfrac{p(t)-q(t)}{1+\mu(t)q(t)}$ | + | The ordered pair $(\mathcal{R},\oplus)$ is an [[Abelian_group | Abelian group]] with subtraction |
+ | $$(p \ominus q)(t) = (p \oplus (\ominus q))(t) = \dfrac{p(t)-q(t)}{1+\mu(t)q(t)}.$$ | ||
==Related definitions== | ==Related definitions== | ||
Line 14: | Line 15: | ||
*Consider the [[dynamic_equations | dynamic equation]] $y^{\Delta \Delta}(t)+p(t)y^{\Delta}(t)+q(t)y(t)=f(t)$. We say this equation is regressive if $,p,q,f \in C_{rd}$ and for all $t \in \mathbb{T}$ | *Consider the [[dynamic_equations | dynamic equation]] $y^{\Delta \Delta}(t)+p(t)y^{\Delta}(t)+q(t)y(t)=f(t)$. We say this equation is regressive if $,p,q,f \in C_{rd}$ and for all $t \in \mathbb{T}$ | ||
$$1-\mu(t)p(t)+\mu^2(t)q(t)\neq 0.$$ | $$1-\mu(t)p(t)+\mu^2(t)q(t)\neq 0.$$ | ||
+ | *If we define the "circle dot" multiplication for $p \colon \mathbb{T} \rightarrow \mathbb{R}$ and $f \colon \mathbb{T} \rightarrow \mathbb{R}$ by | ||
+ | $$(f\odot p)(t) = \left\{ \begin{array}{ll} \dfrac{(1+\mu(t)p(t))^{f(t)}-1}{\mu(t)} &; \mu(t) > 0 \\ | ||
+ | f(t) p(t) &; \mu(t)=0 | ||
+ | \end{array} \right.$$ | ||
+ | then if we restrict $f$ to real constant functions then the triple $(\mathcal{R}^+,\oplus,\odot)$ is a real [[vector_space | vector space]]. |
Revision as of 02:17, 26 May 2014
Let $\mathbb{T}$ be a time scale. Let $p \colon \mathbb{T} \rightarrow \mathbb{R}$. We say that $p$ is regressive if for all $t \in \mathbb{T}^{\kappa}$ $$1+\mu(t)p(t)\neq 0.$$ We let $\mathcal{R}(X,Y)$ denote the set of regressive functions $p \colon X \rightarrow Y$. Let $p,q \in \mathcal{R}$ and define the "circle plus" operation $\oplus \colon \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ by the formula, for $t \in \mathbb{T}^{\kappa}$, $$(p \oplus q)(t) = p(t)+q(t)+\mu(t)p(t)q(t).$$ We define the inverse operation of $\oplus$ by the formula $(\ominus p)(t) = -\dfrac{p(t)}{1+\mu(t)p(t)}$. The ordered pair $(\mathcal{R},\oplus)$ is an Abelian group with subtraction $$(p \ominus q)(t) = (p \oplus (\ominus q))(t) = \dfrac{p(t)-q(t)}{1+\mu(t)q(t)}.$$
Related definitions
- The set of positively regressive functions is
$$\mathcal{R}^+(\mathbb{T},X)=\{p \in \mathcal{R} \colon \forall t \in \mathbb{T}, 1+\mu(t)p(t)>0 \}.$$
- The set of negatively regressive functions is
$$\mathcal{R}^-(\mathbb{T},X)=\{p \in \mathcal{R} \colon \forall t \in \mathbb{T}, 1+\mu(t)p(t)<0 \}.$$
- Consider the dynamic equation $y^{\Delta \Delta}(t)+p(t)y^{\Delta}(t)+q(t)y(t)=f(t)$. We say this equation is regressive if $,p,q,f \in C_{rd}$ and for all $t \in \mathbb{T}$
$$1-\mu(t)p(t)+\mu^2(t)q(t)\neq 0.$$
- If we define the "circle dot" multiplication for $p \colon \mathbb{T} \rightarrow \mathbb{R}$ and $f \colon \mathbb{T} \rightarrow \mathbb{R}$ by
$$(f\odot p)(t) = \left\{ \begin{array}{ll} \dfrac{(1+\mu(t)p(t))^{f(t)}-1}{\mu(t)} &; \mu(t) > 0 \\ f(t) p(t) &; \mu(t)=0 \end{array} \right.$$ then if we restrict $f$ to real constant functions then the triple $(\mathcal{R}^+,\oplus,\odot)$ is a real vector space.