Difference between revisions of "Delta Bernoulli inequality"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
==Theorem==
 
==Theorem==
Let $\alpha \in \mathbb{R}$ be a [[Regressive_function | positively regressive]] constant. Then
+
Let $\alpha \in \mathbb{R}$ be a [[Regressive_function | positively regressive]] constant. Then for all $t,s \in \mathbb{T}$
$$e_{\alpha} \geq 1 + \alpha(t-s)$$
+
$$e_{\alpha} \geq 1 + \alpha(t-s).$$
for all $t,s \in \mathbb{T}$.
 
  
 
==Proof==
 
==Proof==

Revision as of 23:36, 14 September 2016

Theorem

Let $\alpha \in \mathbb{R}$ be a positively regressive constant. Then for all $t,s \in \mathbb{T}$ $$e_{\alpha} \geq 1 + \alpha(t-s).$$

Proof

References

R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger