Difference between revisions of "Delta Bernoulli inequality"
From timescalewiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | Let $\alpha \in \mathbb{R}$ be a [[Regressive_function | positively regressive]] constant. Then | |
$$e_{\alpha} \geq 1 + \alpha(t-s)$$ | $$e_{\alpha} \geq 1 + \alpha(t-s)$$ | ||
for all $t,s \in \mathbb{T}$. | for all $t,s \in \mathbb{T}$. | ||
− | + | ||
− | + | ==Proof== | |
− | |||
− | |||
==References== | ==References== |
Revision as of 23:35, 14 September 2016
Theorem
Let $\alpha \in \mathbb{R}$ be a positively regressive constant. Then $$e_{\alpha} \geq 1 + \alpha(t-s)$$ for all $t,s \in \mathbb{T}$.
Proof
References
R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |