Difference between revisions of "Derivative of delta sinh"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $p\in$ $C_{rd}$....")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Derivative of delta sinh|Theorem]]:</strong> Let $p\in$ [[Right dense continuity|$C_{rd}$]]. If $-\mu p^2 \in \mathcal{R}$, then
+
Let $p\in$ [[Right dense continuity|$C_{rd}$]]. If $-\mu p^2 \in \mathcal{R}$, then
 
$$\sinh^{\Delta}_p = p\cosh_p,$$
 
$$\sinh^{\Delta}_p = p\cosh_p,$$
 
where $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function and $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]].
 
where $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function and $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 02:42, 10 June 2016

Theorem

Let $p\in$ $C_{rd}$. If $-\mu p^2 \in \mathcal{R}$, then $$\sinh^{\Delta}_p = p\cosh_p,$$ where $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function and $\cosh_p$ denotes the $\Delta$-$\cosh_p$.

Proof

References