Difference between revisions of "Derivative of delta sinh"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $p\in$ $C_{rd}$....") |
|||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | Let $p\in$ [[Right dense continuity|$C_{rd}$]]. If $-\mu p^2 \in \mathcal{R}$, then | |
$$\sinh^{\Delta}_p = p\cosh_p,$$ | $$\sinh^{\Delta}_p = p\cosh_p,$$ | ||
where $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function and $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]]. | where $\sinh_p$ denotes the [[Delta sinh|$\Delta$-$\sinh_p$]] function and $\cosh_p$ denotes the [[Delta cosh|$\Delta$-$\cosh_p$]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 02:42, 10 June 2016
Theorem
Let $p\in$ $C_{rd}$. If $-\mu p^2 \in \mathcal{R}$, then $$\sinh^{\Delta}_p = p\cosh_p,$$ where $\sinh_p$ denotes the $\Delta$-$\sinh_p$ function and $\cosh_p$ denotes the $\Delta$-$\cosh_p$.