Difference between revisions of "Relationship between nabla exponential and delta exponential"
From timescalewiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | If $p$ is [[continuous]] and $\nu$-regressive then | |
$$\hat{e}_p(t,s)=e_{\frac{p^{\sigma}}{1-p^{\sigma}\nu}}(t,s)=e_{\ominus(-p^{\sigma})}(t,s),$$ | $$\hat{e}_p(t,s)=e_{\frac{p^{\sigma}}{1-p^{\sigma}\nu}}(t,s)=e_{\ominus(-p^{\sigma})}(t,s),$$ | ||
where $\hat{e}_p$ denotes the [[nabla exponential|$\nabla$-exponential]] and $e_p$ denotes the [[Delta exponential|$\Delta$-exponential]]. | where $\hat{e}_p$ denotes the [[nabla exponential|$\nabla$-exponential]] and $e_p$ denotes the [[Delta exponential|$\Delta$-exponential]]. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 22:22, 9 June 2016
Theorem
If $p$ is continuous and $\nu$-regressive then $$\hat{e}_p(t,s)=e_{\frac{p^{\sigma}}{1-p^{\sigma}\nu}}(t,s)=e_{\ominus(-p^{\sigma})}(t,s),$$ where $\hat{e}_p$ denotes the $\nabla$-exponential and $e_p$ denotes the $\Delta$-exponential.