Difference between revisions of "Delta hyperbolic trigonometric second order dynamic equation"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $\gamma...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Delta hyperbolic trigonometric second order dynamic equation|Theorem]]:</strong> Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order [[dynamic equation]] is
+
Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order [[dynamic equation]] is
 
$$y^{\Delta \Delta}-\gamma^2 y= 0$$
 
$$y^{\Delta \Delta}-\gamma^2 y= 0$$
 
is given by  
 
is given by  
 
$$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$
 
$$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 21:30, 9 June 2016

Theorem

Let $\gamma$ be a nonzero regressive real number, then a general solution of the second order dynamic equation is $$y^{\Delta \Delta}-\gamma^2 y= 0$$ is given by $$y(t) = c_1 \cosh_{\gamma}(t,s) + c_2 \sinh_{\gamma}(t,s).$$

Proof

References