Difference between revisions of "Pythagorean identity for alternate delta trigonometric functions"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $\m...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
<strong>[[Pythagorean identity for alternate delta trigonometric functions|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]]. The following formula holds: | <strong>[[Pythagorean identity for alternate delta trigonometric functions|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]]. The following formula holds: | ||
− | $$\mathrm{c}_{pq}^2(t,s;\mathbb{T})+\mathrm{s}_{pq}(t,s;\mathbb{T})=1,$$ | + | $$\mathrm{c}_{pq}^2(t,s;\mathbb{T})+\mathrm{s}_{pq}^2(t,s;\mathbb{T})=1,$$ |
where $\mathrm{c}_{pq}$ denotes the [[delta cpq|alternative delta cosine]] and $\mathrm{s}_{pq}$ denotes the [[delta spq|alternative delta sine]]. | where $\mathrm{c}_{pq}$ denotes the [[delta cpq|alternative delta cosine]] and $\mathrm{s}_{pq}$ denotes the [[delta spq|alternative delta sine]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 22:57, 2 June 2016
Theorem: Let $\mathbb{T}$ be a time scale. The following formula holds: $$\mathrm{c}_{pq}^2(t,s;\mathbb{T})+\mathrm{s}_{pq}^2(t,s;\mathbb{T})=1,$$ where $\mathrm{c}_{pq}$ denotes the alternative delta cosine and $\mathrm{s}_{pq}$ denotes the alternative delta sine.
Proof: █