Difference between revisions of "Zeros of delta gk"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Zeros of delta gk|Theorem]]:</strong> Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $k$ be a nonnegative integer. Then for all $0 \leq n \leq k-1$,
+
<strong>[[Zeros of delta gk|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], let $t,s \in \mathbb{T}$, and let $k$ be a nonnegative integer. Then for all $0 \leq n \leq k-1$,
 
$$g_k(\rho^n(t),t)=0,$$
 
$$g_k(\rho^n(t),t)=0,$$
where $g_n$ denotes the [[delta gk]] and $\rho^k$ denotes [[composition|compositions]] of the [[backward jump]].
+
where $g_n$ denotes the [[delta gk|$g_k$ monomial]] and $\rho^k$ denotes [[composition|compositions]] of the [[backward jump]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 20:06, 1 June 2016

Theorem: Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $k$ be a nonnegative integer. Then for all $0 \leq n \leq k-1$, $$g_k(\rho^n(t),t)=0,$$ where $g_n$ denotes the $g_k$ monomial and $\rho^k$ denotes compositions of the backward jump.

Proof: