Difference between revisions of "Delta hk"

From timescalewiki
Jump to: navigation, search
Line 4: Line 4:
 
h_{n+1}(t,s)= \displaystyle\int_s^t h_{n}(\tau,s) \Delta \tau.
 
h_{n+1}(t,s)= \displaystyle\int_s^t h_{n}(\tau,s) \Delta \tau.
 
\end{array} \right.$$
 
\end{array} \right.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Integerhk,k=2,s=0plot.png|Graph of $h_2(t,0;\mathbb{Z})$.
 +
File:Integerhk,k=3,s=0plot.png|Graph of $h_3(t,0;\mathbb{Z})$.
 +
File:Integerhk,k=4,s=0plot.png|Graph of $h_4(t,0;\mathbb{Z})$.
 +
File:Integerhk,k=5,s=0plot.png|Graph of $h_5(t,0;\mathbb{Z})$.
 +
</gallery>
 +
</div>
  
 
{{:Table:Delta hk}}
 
{{:Table:Delta hk}}

Revision as of 19:57, 1 June 2016

Define $h_n \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by the scheme: $$\left\{ \begin{array}{ll} h_0(t,s)=1 \\ h_{n+1}(t,s)= \displaystyle\int_s^t h_{n}(\tau,s) \Delta \tau. \end{array} \right.$$

Time Scale $h_k$ Monomials
$\mathbb{T}=$ $h_k(t,s;\mathbb{T})=$
$\mathbb{R}$ $\dfrac{(t-s)^k}{k!}$
$\mathbb{Z}$ $\displaystyle{t-s \choose k} = \dfrac{(t-s)!}{k! (t-s-k)!}$
$h\mathbb{Z}$ $\dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$ $\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$